3.95 \(\int \frac{\cot ^2(c+d x) (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=167 \[ \frac{(-2 B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{(B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}+\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}} \]

[Out]

((I*A - 2*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) + ((I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c
+ d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*Sqrt[a]*d) + ((A + I*B)*Cot[c + d*x])/(d*Sqrt[a + I*a*Tan[c + d*x]]) - ((
2*A + I*B)*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.567088, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3596, 3598, 3600, 3480, 206, 3599, 63, 208} \[ \frac{(-2 B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{(B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}+\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((I*A - 2*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/(Sqrt[a]*d) + ((I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c
+ d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*Sqrt[a]*d) + ((A + I*B)*Cot[c + d*x])/(d*Sqrt[a + I*a*Tan[c + d*x]]) - ((
2*A + I*B)*Cot[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/(a*d)

Rule 3596

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((a*A + b*B)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2
*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Si
mp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] &&  !GtQ[n,
0]

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 3600

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[((a + b*Tan[e + f*x])^m*(a - b*Tan[e + f*x]))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) (A+B \tan (c+d x))}{\sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}}+\frac{\int \cot ^2(c+d x) \sqrt{a+i a \tan (c+d x)} \left (a (2 A+i B)-\frac{3}{2} a (i A-B) \tan (c+d x)\right ) \, dx}{a^2}\\ &=\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}+\frac{\int \cot (c+d x) \sqrt{a+i a \tan (c+d x)} \left (-\frac{1}{2} a^2 (i A-2 B)-\frac{1}{2} a^2 (2 A+i B) \tan (c+d x)\right ) \, dx}{a^3}\\ &=\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{(i A-2 B) \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)} \, dx}{2 a^2}-\frac{(A-i B) \int \sqrt{a+i a \tan (c+d x)} \, dx}{2 a}\\ &=\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{(i A-2 B) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d}+\frac{(i A+B) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=\frac{(i A+B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}+\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}-\frac{(A+2 i B) \operatorname{Subst}\left (\int \frac{1}{i-\frac{i x^2}{a}} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{a d}\\ &=\frac{(i A-2 B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{\sqrt{a} d}+\frac{(i A+B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{\sqrt{2} \sqrt{a} d}+\frac{(A+i B) \cot (c+d x)}{d \sqrt{a+i a \tan (c+d x)}}-\frac{(2 A+i B) \cot (c+d x) \sqrt{a+i a \tan (c+d x)}}{a d}\\ \end{align*}

Mathematica [A]  time = 3.96218, size = 224, normalized size = 1.34 \[ \frac{(A \cot (c+d x)+B) \left (2 (B-2 i A) \sin (c+d x)+\frac{\left (-1+e^{2 i (c+d x)}\right ) \sqrt{\sec (c+d x)} \left ((A-i B) \sinh ^{-1}\left (e^{i (c+d x)}\right )+\sqrt{2} (A+2 i B) \tanh ^{-1}\left (\frac{\sqrt{2} e^{i (c+d x)}}{\sqrt{1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt{2} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}}}-2 A \cos (c+d x)\right )}{2 d \sqrt{a+i a \tan (c+d x)} (A \cos (c+d x)+B \sin (c+d x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(Cot[c + d*x]^2*(A + B*Tan[c + d*x]))/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((B + A*Cot[c + d*x])*(-2*A*Cos[c + d*x] + ((-1 + E^((2*I)*(c + d*x)))*((A - I*B)*ArcSinh[E^(I*(c + d*x))] + S
qrt[2]*(A + (2*I)*B)*ArcTanh[(Sqrt[2]*E^(I*(c + d*x)))/Sqrt[1 + E^((2*I)*(c + d*x))]])*Sqrt[Sec[c + d*x]])/(Sq
rt[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]) + 2*((-2*I)*A + B)*Sin[c
+ d*x]))/(2*d*(A*Cos[c + d*x] + B*Sin[c + d*x])*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 0.575, size = 2727, normalized size = 16.3 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

-1/4/d/a*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(I*A*cos(d*x+c)^3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)-8*I*A
*cos(d*x+c)+8*I*A*cos(d*x+c)^3+2*I*B*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2
*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-I*A*cos(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*c
os(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)-I*B*sin(d*x+c)*(-2*cos(d*x+c)
/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1)
)^(1/2))*2^(1/2)+I*A*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))-A*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(
1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)+I
*A*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)
/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)-2*I*B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x
+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)-B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-
I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)-2*I*B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1
/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+I*A*(-2*cos(d*x+c)/(cos(d*
x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-I*A*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^
(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-I*A*cos(d*x+c)^3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arc
tan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+2*I*B*cos(d*x+c)^3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+2*I*B*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))-I*A*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2))*2^(1/2)+B*cos(d*x+c)^3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-si
n(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)+B*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/
2)+I*A*cos(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-B*cos(d*
x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)+A*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*co
s(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*2^(1/2)-I*A*(-2*cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*sin(d*x+c)-2*I*B*co
s(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)
-1)/sin(d*x+c))-A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+
c)+2*B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1
)/sin(d*x+c))*sin(d*x+c)-4*A*cos(d*x+c)^2*sin(d*x+c)-A*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))-2*B*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(
1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+A*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(
1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-2*B*cos(d*x+c)^2*sin(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(
-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+I*B*cos(d*x+c)^2*sin(d*x+c)*(-2*cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(cos(d*
x+c)+1))^(1/2))*2^(1/2)+A*cos(d*x+c)^3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1
))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+2*B*cos(d*x+c)^3*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(
-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+A*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/
(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))+2*B*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/
2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-A*cos(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*
cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))-2*B*cos(d*x+c)*(-2*cos(d*x+c)/(cos(d*x+c
)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+4*B*cos(d*x+c)-4*cos(d*x+c)^3*B)/(cos(d*x+c)-1)/(I*
sin(d*x+c)+cos(d*x+c))/(cos(d*x+c)+1)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 2.97838, size = 2034, normalized size = 12.18 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(sqrt(2)*((-6*I*A + 2*B)*e^(4*I*d*x + 4*I*c) - 4*I*A*e^(2*I*d*x + 2*I*c) + 2*I*A - 2*B)*sqrt(a/(e^(2*I*d*x
 + 2*I*c) + 1))*e^(I*d*x + I*c) + (a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt(-(2*A^2 - 4*I*A*B -
 2*B^2)/(a*d^2))*log((a*d*sqrt(-(2*A^2 - 4*I*A*B - 2*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*((I*A + B)*e^
(2*I*d*x + 2*I*c) + I*A + B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)
) - (a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt(-(2*A^2 - 4*I*A*B - 2*B^2)/(a*d^2))*log(-(a*d*sqr
t(-(2*A^2 - 4*I*A*B - 2*B^2)/(a*d^2))*e^(2*I*d*x + 2*I*c) - sqrt(2)*((I*A + B)*e^(2*I*d*x + 2*I*c) + I*A + B)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(4*I*A + 4*B)) + (a*d*e^(4*I*d*x + 4*I*c)
- a*d*e^(2*I*d*x + 2*I*c))*sqrt(-(A^2 + 4*I*A*B - 4*B^2)/(a*d^2))*log((sqrt(2)*((176*I*A - 352*B)*e^(2*I*d*x +
 2*I*c) + 176*I*A - 352*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + 88*(3*a*d*e^(2*I*d*x + 2*I*c) +
 a*d)*sqrt(-(A^2 + 4*I*A*B - 4*B^2)/(a*d^2)))/((-507*I*A + 1014*B)*e^(2*I*d*x + 2*I*c) + 507*I*A - 1014*B)) -
(a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt(-(A^2 + 4*I*A*B - 4*B^2)/(a*d^2))*log((sqrt(2)*((176*
I*A - 352*B)*e^(2*I*d*x + 2*I*c) + 176*I*A - 352*B)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 88*(3*
a*d*e^(2*I*d*x + 2*I*c) + a*d)*sqrt(-(A^2 + 4*I*A*B - 4*B^2)/(a*d^2)))/((-507*I*A + 1014*B)*e^(2*I*d*x + 2*I*c
) + 507*I*A - 1014*B)))/(a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (A + B \tan{\left (c + d x \right )}\right ) \cot ^{2}{\left (c + d x \right )}}{\sqrt{a \left (i \tan{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral((A + B*tan(c + d*x))*cot(c + d*x)**2/sqrt(a*(I*tan(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{2}}{\sqrt{i \, a \tan \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*cot(d*x + c)^2/sqrt(I*a*tan(d*x + c) + a), x)